Hollings Home  
 
Viswanathan Palanisamy, PhD
Associate Professor of Oral Health Sciences
College of Dental Medicine
MUSC

Email: visu@musc.edu
 
       Print This Page
       
 
 


 

Viswanathan Palanisamy, PhD

Return to Search Page  

Research Interest:

Dr. Palanisamy is interested in basic and translational research programs to study posttranscriptional gene regulation during oral cancer development and progression. The major focus of his research is analyzing the contribution of an unusual form of post-transcriptional gene expression to mRNA metabolism, as well as the adaptation of mRNA stability and their associated proteins to this process. The goal of his research is to translate these findings into clinical applications, including development of biological markers for the diagnosis of oral cancer and potential therapies designed to favorably modify the progression of the disease.

Selected Publications:

1.House RP, Talwar S, Hazard ES, Hill EG, Palanisamy V. RNA-binding protein CELF1 promotes tumor growth and alters gene expression in oral squamous cell carcinoma. Oncotarget. .6(41):43620-34, 2015. PMID: 26498364
View in: PubMed

2.Talwar S, House R, Sundaramurthy S, Balasubramanian S, Yu H, Palanisamy V. Inhibition of caspases protects mice from radiation-induced oral mucositis and abolishes the cleavage of RNA-binding protein HuR. J Biol Chem. .289(6):3487-500, 2013. PMID: 24362034 PMCID: PMC3916550
View in: PubMed

3.Talwar S, Balasubramanian S, Sundaramurthy S, House R, Wilusz CJ, Kuppuswamy D, D'Silva N, Gillespie MB, Hill EG, Palanisamy V. Overexpression of RNA-binding protein CELF1 prevents apoptosis and destabilizes pro-apoptotic mRNAs in oral cancer cells. RNA Biol. .10(2):277-86, 2013. PMID: 23324604 PMCID: PMC3594286
View in: PubMed

4.Palanisamy V, Jakymiw A, Van Tubergen EA, D'Silva NJ, Kirkwood KL. Control of cytokine mRNA expression by RNA-binding proteins and microRNAs. J Dent Res. .91(7):651-8, 2012. PMID: 22302144 PMCID: PMC3383846
View in: PubMed

5.Sharma S, Gillespie BM, Palanisamy V, Gimzewski JK. Quantitative nanostructural and single-molecule force spectroscopy biomolecular analysis of human-saliva-derived exosomes. Langmuir. .27(23):14394-400, 2011. PMID: 22017459 PMCID: PMC3235036
View in: PubMed

6.Ramachandran S, Palanisamy V. Horizontal transfer of RNAs: exosomes as mediators of intercellular communication. Wiley Interdiscip Rev RNA. .3(2):286-93, 2011. PMID: 22012863 PMCID: PMC3263325
View in: PubMed

7.Talwar S, Jin J, Carroll B, Liu A, Gillespie MB, Palanisamy V. Caspase-mediated cleavage of RNA-binding protein HuR regulates c-Myc protein expression after hypoxic stress. J Biol Chem. .286(37):32333-43, 2011. PMID: 21795698 PMCID: PMC3173192
View in: PubMed

8.Yu H, Sun Y, Haycraft C, Palanisamy V, Kirkwood KL. MKP-1 regulates cytokine mRNA stability through selectively modulation subcellular translocation of AUF1. Cytokine. .56(2):245-55, 2011. PMID: 21733716 PMCID: PMC3185122
View in: PubMed

9.Sharma S, Rasool HI, Palanisamy V, Mathisen C, Schmidt M, Wong DT, Gimzewski JK. Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano. .4(4):1921-6, 2010. PMID: 20218655 PMCID: PMC2866049
View in: PubMed

10.Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT. Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS One. .5(1):e8577, 2010. PMID: 20052414 PMCID: PMC2797607
View in: PubMed

11.Palanisamy V, Wong DT. Transcriptomic analyses of saliva. Methods Mol Biol. .666:43-51, 2010. PMID: 20717777 PMCID: PMC3171800
View in: PubMed

12.Palanisamy V, Park NJ, Wang J, Wong DT. AUF1 and HuR proteins stabilize interleukin-8 mRNA in human saliva. J Dent Res. .87(8):772-6, 2008. PMID: 18650551 PMCID: PMC2572714
View in: PubMed

13.Park NJ, Zhou X, Yu T, Brinkman BM, Zimmermann BG, Palanisamy V, Wong DT. Characterization of salivary RNA by cDNA library analysis. Arch Oral Biol. .52(1):30-5, 2006. PMID: 17052683 PMCID: PMC2743855
View in: PubMed

14.Palaniswamy V, Moraes KC, Wilusz CJ, Wilusz J. Nucleophosmin is selectively deposited on mRNA during polyadenylation. Nat Struct Mol Biol. .13(5):429-35, 2006. PMID: 16604083 PMCID: PMC2811576
View in: PubMed

15.Viswanathan P, Ohn T, Chiang YC, Chen J, Denis CL. Mouse CAF1 can function as a processive deadenylase/3'-5'-exonuclease in vitro but in yeast the deadenylase function of CAF1 is not required for mRNA poly(A) removal. J Biol Chem. .279(23):23988-95, 2004. PMID: 15044470
View in: PubMed

16.Clark LB, Viswanathan P, Quigley G, Chiang YC, McMahon JS, Yao G, Chen J, Nelsbach A, Denis CL. Systematic mutagenesis of the leucine-rich repeat (LRR) domain of CCR4 reveals specific sites for binding to CAF1 and a separate critical role for the LRR in CCR4 deadenylase activity. J Biol Chem. .279(14):13616-23, 2004. PMID: 14734555
View in: PubMed

17.Viswanathan P, Chen J, Chiang YC, Denis CL. Identification of multiple RNA features that influence CCR4 deadenylation activity. J Biol Chem. .278(17):14949-55, 2003. PMID: 12590136
View in: PubMed

18.Liu HY, Chiang YC, Pan J, Chen J, Salvadore C, Audino DC, Badarinarayana V, Palaniswamy V, Anderson B, Denis CL. Characterization of CAF4 and CAF16 reveals a functional connection between the CCR4-NOT complex and a subset of SRB proteins of the RNA polymerase II holoenzyme. J Biol Chem. .276(10):7541-8, 2000. PMID: 11113136
View in: PubMed

19.Viswanathan P, Sriram V, Yogeeswaran G. Sensitive spectrophotometric assay for 3-hydroxy-substituted flavonoids, based on their binding with molybdenum, antimony, or bismuth. J Agric Food Chem. .48(7):2802-6, 2000. PMID: 10898625
View in: PubMed